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We study the interaction of a gravitational wave (GW) with a plasma that is strongly magnetized. The
GW is considered a small disturbance, and the plasma is modeled by the general relativistic analogue of
the induction equation of ideal MHD and the single fluid equations. The equations are specified to two
different cases, first to Cartesian coordinates and a constant background magnetic fields, and second to
spherical coordinates together with a background magnetic field that decays with the inverse radial
distance. The equations are derived without neglecting any of the nonlinear interaction terms, and the
nonlinear equations are integrated numerically. We find that for strong magnetic fields of the order of
1015 G the GW excites electromagnetic plasma waves very close to the magnetosonic mode. The magnetic
and electric field oscillations have very high amplitude, and a large amount of energy is absorbed from the
GW by the electromagnetic oscillations, of the order of 1023 erg=cm3 in the case presented here, which,
when assuming a relatively small volume in a star’s magnetosphere as an interaction region, can yield a
total energy of at least 1041 erg and may be up to 1043 erg. The absorbed energy is proportional to B2

0, with
B0 the background magnetic field. The energizing of the plasma takes place on fast time scales of the order
of milliseconds. Our results imply that the GW-plasma interaction is an efficient and important
mechanism in magnetar atmospheres, most prominently close to the star, and, under very favorable
conditions though, it might even be the primary energizing mechanism behind giant flares.
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I. INTRODUCTION

Gravitational waves (GW) can carry a large amount of
energy near the sources where they are generated (e.g. [1]).
They tend not to interact much with matter under normal
conditions; it has been shown though in a number of
articles (e.g. [2–10]) that GWs excite various kinds of
plasma waves, the more efficient, the stronger the back-
ground magnetic field is and the more tenuous the plasma
is. Most of these studies are analytical and the equations
describing the GW-plasma interaction were linearized,
only Ref. [4] made an analytical study of a nonlinear
model, Refs. [2,5] took some second order effects into
account, and Ref. [11] performed a numerical study. The
GW-plasma interaction is a totally nonlinear effect, and
there is so far no conclusive answer to the question of how
much energy can be absorbed by a plasma from a GW.

Here, we study the GW-plasma interaction in its full
nonlinearity, solving the nonlinear system of equations
numerically. Our main interest is in the amount of energy
absorbed by the plasma from the GW and in the kind of
plasma waves excited by the GW, and we focus on the case
of very strong magnetic fields of the order of 1015 G.

Our results show that the interaction of gravitational
waves with plasmas is very efficient in transferring energy
from the GW to the plasma if the magnetic field is very
strong, of the order of 1015 G. Magnetic fields of this
strength are known to be realized at the surface of magne-
tars, which are strongly magnetized neutron stars (see e.g.

[12]) that at the same time appear as soft gamma ray
repeaters (SGR). We will address the question whether
the GW-plasma interaction might be the primary mecha-
nism behind giant flares on magnetars (highly energetic
outbursts in the stars’ magnetospheres; see e.g. [13]). We
will also discuss whether the GW-plasma interaction can
provide the energies observed in short gamma ray bursts
(GRB; see e.g. [14]), so that short GRBs could be inter-
preted as giant flares on magnetars that carry even more
energy than the giant flares observed so far. A related
model of short GRBs as giant flares on magnetars is dis-
cussed e.g. in [15–17]), where the giant flares are caused
though by a catastrophic reconfiguration of the stellar
magnetic field, and not by the GW-plasma interaction as
we will discuss it here. The origin of short GRBs is far less
established than that of the long GRBs. The energy re-
leased in short GRBs is currently estimated to be at least
1048 erg [16]; the uncertainty is mainly due to the problem
of associating short GRBs with physical objects. The du-
ration of short GRBs is less than 2 seconds. Giant flares
have similar durations and release energies in the range
1044 to 1046 erg (e.g. [13]).

In Sec. II, we introduce the basic equations and specify
the one-dimensional model. A linear analysis of the equa-
tions is given in Sec. III. In Sec. IV, the results from the
numerical solution of the nonlinear equations are pre-
sented, for the case of a constant background magnetic
field. In Sec. V, we transform the system of equations to
spherical coordinates, and we solve them along the radial
direction, for the case of a background magnetic field that
decays with the inverse distance from the central star.*Electronic address: isliker@helios.astro.auth.gr
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Section VI discusses the application of our findings to
magnetar atmospheres, and Sec. VII contains the
conclusions.

II. BASIC EQUATIONS

The GW is considered as a small amplitude perturbation
of the otherwise flat spacetime, and we assume it to
be + polarized and to propagate along the z-direction, so
that the metric has the form

 gab � diag��1; 1� h; 1� h; 1�; (1)

with h�z; t� � 1 the amplitude of the GW [18]. Our aim is
to express the final equations in terms of the potentially
observable quantities (electric field ~E, magnetic field ~B, 3-
velocity ~V of the fluid, and rest-mass density �), which can
either be defined in a local inertial frame (LIF) or in an
orthonormal (ON) frame (ONF) [18]. Here, we use the
ONF, because it is a global frame, and it can be shown
that the ONF in our case is locally equivalent to a LIF when
applying the particular coordinate transformation given in
[19]. Indices of quantities in the ONF carry a hat in the
following. The transformation from and to the ONF is
given by the transformation matrix

 �eâ�b � diag
�
1;

1������������
1� h
p ;

1������������
1� h
p ; 1

�
(2)

and its inverse �eâ�b. Here, eâ are the ON basis vectors, and
�eâ�b are their coordinates in the coordinate base. The
metric in the ONF is of flat spacetime form, �â b̂ �
diag��1; 1; 1; 1�. In the ONF, 4-vectors and tensors take
the same form as in flat spacetime, the effects of curvature
appear only through the covariant derivatives.

The covariant derivatives in the ONF are denoted by ‘‘;’’
and defined as, e.g. in the case of a 4-vector ua,

 uâ;ĉ � �eĉ�
kuâ;k � �

â
b̂ ĉ
ub̂; (3)

where ‘‘,’’ denotes partial derivatives, and where the

 �â
b̂ ĉ

:� �eb̂�
i
;k�e

â�i�eĉ�k (4)

are the Ricci rotation coefficients [19]. For the metric gab
and our choice of ON base vectors, the Ricci rotation
coefficients found to be nonzero are

 �x̂ẑ x̂ �
1

2
@zh

1

1� h
(5)

 �x̂t̂ x̂ �
1

2c
@th

1

1� h
(6)

 �ŷẑ ŷ � �
1

2
@zh

1

1� h
(7)

 �ŷt̂ ŷ � �
1

2c
@th

1

1� h
(8)

 �ẑx̂ x̂ � �
1

2
@zh

1

1� h
(9)

 �ẑŷ ŷ �
1

2
@zh

1

1� h
(10)

 �t̂x̂ x̂ �
1

2c
@th

1

1� h
(11)

 �t̂ŷ ŷ � �
1

2c
@th

1

1� h
: (12)

We assume an ideal conducting fluid, so that the electric
field is given by the ideal Ohm’s law,

 0 � Fâ b̂ub̂=c; (13)

which in the ONF takes the usual form,

 0 � �̂
�
~E�

1

c
~V � ~B

�
; (14)

with �̂ � 1=
����������������������
1� ~V2=c2

q
, uâ the 4-velocity, uâ �

�̂�c; Vx; Vy; Vz�, and c the speed of light, and Fâ b̂

Faraday’s field tensor,

 Fâ b̂ �

0 Ex Ey Ez
�Ex 0 Bz �By
�Ey �Bz 0 Bx
�Ez By �Bx 0

0BBB@
1CCCA: (15)

The evolution of the magnetic field is determined by the
Maxwell’s equation [19]

 Fâ b̂;ĉ � Fb̂ ĉ;â � Fĉ â;b̂ � 0: (16)

The electromagnetic (EM) energy momentum tensor is
defined as

 Tâ b̂�EM� �
c2

4�

�
Fâ ĉFb̂ĉ �

1

4
�â b̂Fĉ d̂Fĉ d̂

�
; (17)

and for the fluid, we have the energy momentum tensor

 Tâ b̂
�fl� � Huâub̂ � �â b̂pc2; (18)

where H is the enthalpy and p the pressure [19]. We
assume an ideal and adiabatic fluid, so that

 H � �c2 �
p

�� 1
� p; (19)

with � the adiabatic index. The total energy momentum
tensor Tâ b̂ � Tâ b̂�fl� � T

â b̂
�EM� yields the momentum and en-

ergy equations [19]

 Tâ b̂
;b̂
� 0: (20)

Continuity is expressed by

 ��uâ�;â � 0: (21)
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The evolution of the GW is determined by the linearized
Einstein equation, where we take the backreaction of the
plasma onto the GW into account:

 � @tth� c
2 ~r2h � �

1

2

16�G

c4 ��Txx � �Tyy�; (22)

where �Txx, �Tyy are the nonbackground, fluctuating parts
of the components Txx, Tyy of the total energy momentum
tensor, andG is the gravitational constant [18]. To close the
system of equations, we assume an adiabatic and isentropic
equation of state,

 p � K��: (23)

The constant K is determined by assuming an ideal gas law
for the constant background density �0, i.e. p0 �

�0�kB=m�T0, so that, on combining with Eq. (23), K �
�1��

0
kB
m T0, with T0 the temperature.

A. The model

We focus on the excitation of MHD modes which propa-
gate in the z-direction, parallel to the propagation direction
of the GW and perpendicular to the background magnetic
field ~B0 � B0ex̂. We let consequently ~B k ex̂, ~E k eŷ, and
~V k eẑ, and all variables depend spatially only on z (note

that Bx in the following is the total magnetic field—it
includes B0). In specifying the general equations to this
particular geometry, (i) we express all 4-vector and tensor
components through the potentially observable Bx, Vz, and
�; (ii) we expand the covariant derivatives; (iii) we keep all
nonlinear terms, no approximations are thus made (except
for the linearized Einstein equation). In this way, we are led
to a system of nonlinear, coupled, partial differential equa-
tions in a spatially 1D geometry: With the electric field Ey
from Ohm’s law [Eq. (14)],

 Ey � �
1

c
VzBx; (24)

Faraday’s equation [Eq. (16)] is fully expanded to

 @tBx � c@zEy �
1

2
Bx

@th
1� h

�
1

2
cEy

@zh
1� h

: (25)

Expansion of the z-component of the momentum
equation [Eq. (20)] yields
 

@tqẑ � @z

��
qẑ �

c
4�
��EyBx�

�
Vz

�
� @z

�
c2

8�
�B2

x � E
2
y�

�

� c2@zp�
c

8�
Bx�cBx � EyVz�

@zh
�1� h�

�
c

8�
Ey�cEy � BxVz�

@zh
�1� h�

� qẑ�@th� Vz@zh�
h

1� h2 � 0; (26)

where we defined the new momentum variable qẑ as

 qẑ :� HVz�̂
2 �

c
4�
��EyBx�: (27)

The continuity equation [Eq. (21)] takes the form

 @tD� @z�DVz� � �D@th�DVz@zh�
h

1� h2 � 0; (28)

with the new density variable D :� �̂�. The GW evolves
according to

 @tth� c2@zzh�
2G

c2 �E
2
y� �B2

x�B2
0�� �

16�G

c2 �p�p0�h

(29)

[see Eq. (22)], where the background magnetic field B0 and
background pressure p0 � K��

0 have been subtracted.
For the numerical solution, Eq. (29) has to be turned to

first order in time, which is achieved by defining two new
variables a :� @th and b :� c@zh, so that Eq. (29) is
replaced by

 @th � a; (30)

 @ta� c@zb��
2G

c2 �E
2
y� �B

2
x�B

2
0���

16�G

c2 �p�p0�h;

(31)

 @tb � c@za: (32)

To recover �̂, �, p, H, and Vz from the explicitly
evolving variables qẑ, D, and By, we solve the definition
of qẑ for Vz and insert it into a reformulated definition of �̂,
which yields

 ��̂2 � 1�
�
H�̂2 �

1

4�
B2
x

�
2
�

�
�̂qz
c

�
2
� 0; (33)

where in the enthalpy H we replace � by D=�̂.
Equation (33) is a nonlinear equation for �̂, which we
solve numerically. Once �̂ is recovered, all the other pri-
mary variables follow in a straightforward way.

III. LINEAR ANALYSIS

Assuming perturbations of the form exp��i!t� ikzz�,
we linearize the one-dimensional momentum equation
(26), and, on inserting the expressions for h, H, Bx, Ey,
�, P as determined from the linearization of the Eqs. (19),
(23)–(25), (28), and (29), we are led to the dispersion
relation,
 �
!
kz

�
2
�
�0c

2 �
�P0

�� 1
�
B2

0

4�

�

�
c2B2

0

4�

�
1�

2g2

!2 �!2
gw � g2

�
� c2c2

s�0 � 0; (34)

for the coupled GW-plasma system. Here, the parameter g
is given by g �

�������
2G
p

B0=c, and the sound velocity cs is
defined as c2

s � @P=@�. Equation (34) can be written
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equivalently in the following suitable form:

 �!2 �!2
gw � g2��!2 �!2

s� � !2
ms�!2 �!2

gw � g2�;

(35)

where the characteristic frequencies !gw (GW frequency),
!s (sound frequency), and !ms (magnetosonic frequency)

are given by !gw � kzc, !ms � kzuA, and !s � kz ~cs,
respectively. Here, uA is the relativistic Alfvén velocity,
u2
A � v2

A=�1� v
2
A=c

2	, where v2
A � B2

0=4�f�0 �
�P0=���� 1�c2	g�1, and ~cs is a modified sound velocity
given by ~c2

s � c2
su

2
A�4��0=B

2
0�.

Solving the dispersion relation Eq. (35) for !, we find

 !2 �
!2
gw �!

2
ms � g

2 �!2
s 


������������������������������������������������������������������������������������������������������������������������������������������
�!2

gw �!
2
ms�

2 � �g2 �!2
s�

2 � 2�!2
gw�g

2 �!2
s� �!

2
ms�3g

2 �!2
s�	

q
2

: (36)

The oscillation frequency of the coupled GW-plasma sys-
tem is given in terms of known characteristic frequencies.
In the limit of interest here, i.e. close to resonance whereB0

is so large that the relativistic Alfvén speed is almost equal
to the speed of light, uA � c, so that as a consequence
!gw ’ !ms � !s, g, Eq. (36) can be simplified to

 !2 ’ !2
gw 


�������
5G
2

s
B0

c
!gw: (37)

It is obvious that only the lower sign of Eq. (37) is physi-
cally meaningful. Even in the case of resonance, there
exists a small frequency shift [the second term on the
right-hand side of Eq. (37)], which depends on the mag-
netic field strength, and which can be attributed to the
coupling terms in the GW-plasma system.

A. The nature of the GW plasma interaction

It is convenient to explain the nature of the GW-plasma
interaction in the frame of the linearized equations. The
linearized Faraday’s equation [Eq. (25)], upon inserting
Ey;1 � �

1
c Vz;1B0 from the linearized Ohm’s law

[Eq. (24)], takes the form

 @tBx;1 � �B0@zVz;1 �
1
2B0@th (38)

(here and in the following, Ey;1, Vz;1, Bx;1  Bx � B0, and
qz;1 are first order quantities). Linearizing the momentum
equation [Eq. (26)], we find, on neglecting the thermal
pressure,

 @tqẑ;1 �
c2

8�
2B0@zBx;1 �

c2

8�
B2

0@zh � 0: (39)

The linearized momentum qẑ;1 [Eq. (27)] is related to the
velocity as

 qẑ;1 � �0c2Vz;1 �
1

4�
B2

0Vz;1; (40)

where we have again neglected the pressure. In a tenuous
and strongly magnetized plasma, the matter energy density
is much smaller than the magnetic energy density, so that
qẑ;1 �

1
4�B

2
0Vz;1; and, for a plane GW, the term �c2=2�@zh

equals ��c=2�@th. Inserting into Eq. (39), we find

 B2
0@tVz;1 � c

2B0@zBx;1 �
c
2
B2

0@th � 0: (41)

The continuity equation (28) contains no first order GW
coupling term.

Both the magnetic field equation (38) and the momen-
tum equation (41) contain a GW coupling term propor-
tional to the GW amplitude. Since these coupling terms are
also proportional to B0 or B2

0, respectively, it is evident that
the GW-plasma coupling is the more effective, the stronger
the background magnetic fieldB0 is, with an upper limit for
the efficiency that can be given only through a nonlinear
feedback mechanism.

The GW-plasma interaction can then be described as
follows: The induction equation, Eq. (38), shows that the
GW tries to modulate the magnetic field periodically; it
actually continuously compresses and relaxes the magnetic
field through the term 1

2B0@th (see also e.g. [6,20] and the
illustrations therein). This modulation acts as an ’’electro-
motive force,’’ additional to the one caused by the electric
field in the classical Faraday’s law (� B0@zVz;1), and it
induces a fluctuating magnetic field on top of the back-
ground magnetic field. Turning then to the momentum
equation, Eq. (41), we first note that for B0 of the order
of 1015 Gauss, our numerical results show that the mag-
netic term c2B0@zBx;1 is larger than the GW coupling term
( c2B

2
0@th), so that the fluid is excited mainly through the

magnetic field. This magnetic term represents the force
exerted by the magnetic pressure on the fluid; fluid modes
are thus activated as a reaction to fluctuations in the mag-
netic pressure {the corresponding pressure term in the
nonlinear momentum equation, Eq. (26), is @z�

c2

8� �B
2
x�	g.

The GW-plasma interaction and its efficiency are thus
not mediated through matter, as it would be if electric
currents would be excited by the GW, but they are due to
the primary and direct coupling of the GW to the magnetic
field, by adding a gravitational electromotive force to
Faraday’s equation. The excitation of fluid oscillations is
a secondary effect, caused by magnetic pressure fluctua-
tions, which in turn gives rise to electric field fluctuations
according to Ohm’s law. Also a secondary effect is the
appearance of currents, which in the ideal MHD approach
are due to magnetic field inhomogeneities, ~J � c

4�r�
~B.

We just note that the GW is not able to directly generate
currents through charge separation, since it is insensitive to
the sign of charges.

HEINZ ISLIKER, INGMAR SANDBERG, AND LOUKAS VLAHOS PHYSICAL REVIEW D 74, 104009 (2006)

104009-4



IV. NUMERICAL SOLUTION

We solve the GW-plasma system of equations applying a
pseudospectral method that is based on Chebyshev poly-
nomials (see e.g. [21]). The basic principle is that all the
spatially dependent variables are expanded in terms of
Chebyshev polynomials, which allows one to calculate
the spatial derivatives, so that the original partial differen-
tial equations turn into a set of coupled, nonlinear ordinary
differential equations. Time stepping is then done with the
method of lines, using a fourth order Runge-Kutta method
with adaptive step-size control, which allows one to pre-
scribe an internal relative precision and to increase or
decrease the internal time step, depending on how well
or bad the precision criterion is fulfilled.

The one-dimensional grid along the z-direction consists
of 256 grid points and corresponds to a physical domain
along the z-axis of length L � 5:4107 cm, if not stated
otherwise. The sampling time step �t is set to �t �
Tgw=14, with Tgw � 1=fgw and fgw the GW frequency.

A. Parameters, initial and boundary conditions

We assume a background magnetic field B0 of 1015 G, a
background density �0 � 10�14 g cm�3, and an adiabatic
index � � 4=3. The initial conditions are Bx�z; 0� � B0,
Vz�z; 0� � 0, ��z; 0� � �0, and h�z; 0� � 0. The GW has as
boundary condition at the left end zL of the box h�zL; t� �
h0�t� cos�kgwzL �!gwt�, so that a monochromatic plane
wave is entering the box. The amplitude h0 rises within
roughly 1 ms from 0 to 10�4, at which value it stays
constant for about 3 ms (in most applications presented),
where after it decays to 0 again.

At the right edge zR of the box, we apply nonreflecting
boundary conditions to h�zR; t� (based on the analysis of
characteristic modes for hyperbolic systems). Bx, Vz, and �
have free outflow boundary conditions at both edges of the
box, where in a thin layer at the boundaries the actual
equations gradually are changed to one-way wave equa-
tions that allow only outgoing waves (the use of nonre-
flecting boundaries in the case of Bx, Vz, and � basically
yielded the same numerical results, at the expense of
computing time, though).

The GW frequency is set to fgw � 5 kHz, and the GW
dispersion relation is of the form 2�fgw � !gw � kgwc,
with kgw the wave number of the GW.

B. Numerical results

The total mean energy density �pl in the plasma at a
given time t is numerically determined as

 

�pl�t� �
�

1

8�

Z
Ey�z; t�

2dz�
1

8�

Z
�Bx�z; t� � B0�

2dz

�
1

2

Z
��z; t�vz�z; t�2dz

��
L; (42)

with L the size of the system—note that we subtract the
constant background magnetic field B0 in order to take into
account only the energy that is in the wave motion.
Figure 1 shows �pl�t� and the mean energy density �gw�t�
of the GW as a function of time, where

 �gw�t� �
c2

32�G
!2
gw

�h�t�2; (43)

with �h�t� the mean instantaneous amplitude of the GW
oscillation, defined as the root mean square average over
the entire simulation box [18],

 

�h�t� �

�������������������������������Z
h�z; t�2dz=L

s
: (44)

In all applications, the box length L is such that the
simulation box contains several wavelengths of the GW
(nine for the standard value of L), which accounts for the
fact that the GW energy density cannot be defined locally
(e.g. [18,19]). Moreover, we note that the concept of
gravitational energy is only well defined for asymptotically
flat spaces ([19]), so that the GW energy calculated here is
an approximate, but also usual estimate for the case of a
weak GW with a short wavelength compared to the system
size (e.g. [18,19]).

FIG. 1. Top: Average energy density �gw�t� of the GW as a
function of time. Bottom: Mean total energy density �pl�t� of the
plasma as a function of time.
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In Fig. 1 then and at maximum GW amplitude, the
energy density of the GW amounts to �gw � 1:3�
1027 erg=cm3. Once the GW enters the system, the plasma
starts to absorb energy from the GW, and in roughly 2 ms,
slightly delayed in the beginning but finally in parallel with
the GW reaching its maximum energy, the absorption has
reached its maximum, the energy density in the plasma is
roughly 1023 erg=cm3. The absorbed energy is a fraction
10�4 of the GW energy density, so that the backreaction
onto the GW is not yet important. When the GW leaves the
system, the energy in the plasma decays almost together
with the GW amplitude, i.e. the excited waves propagate
out of the simulation box.

The GW excites wave motions in the plasma that travel
with the GW and whose amplitudes increase linearly to-
wards the out-flowing edge of the box. Maximum ampli-
tudes attained are 3� 1012 statvolt=cm (9� 1016 V=m)
for the electric field, 3� 1012 G for the oscillating mag-
netic field, roughly 3 orders of magnitude less than B0, and
finally the fluid velocity oscillations have a maximum
amplitude 8� 107 cm= sec. The fluid motions thus remain
nonrelativistic, so that our nonrelativistic estimate of the
kinetic energy is justified.

The waves excited in Ey, Bx, and Vz have wave number
kz and frequency ! that cannot be distinguished from kgw
and !gw within the numerical precision of the simulation,
see Fig. 2. In particular, we do not find any harmonics to be
excited. The relativistic Alfvén speed u2

A � B2
0=�4��0 �

B2
0=c

2� is very close to the speed of light [�c� uA�=c �
2� 10�24] so that the excited plasma modes are indistin-
guishable from magnetosonic modes.

C. Discussion

The numerical results show that, for strong magnetic
fields, a large amount of energy is absorbed by the plasma
from the GW on a short time scale, which is of the order of
10 GW periods, i.e. in the millisecond range.

In a parametric study, we found that the energy absorbed
by the plasma is proportional to B2

0 (see Fig. 3) and to h2
0.

Varying �0 in the range 10�20 g=cm3 � �0 � 105 g=cm3,
it turned out that the absorbed energy is independent of the
value of the matter density �0, see Fig. 4; the kinetic energy
is actually negligible compared to the electromagnetic
energy (this is in accordance with the fact that the back-
ground matter rest-energy density is much smaller than the
background magnetic energy density in the entire range of
values �0 investigated). The absorbed energy density is
furthermore proportional to !2

gw, as we verified by varying
the frequency in the kHz range (from 1 to 10 kHz). It also
seems that the time for the plasma needed to reach the
maximum level of energy absorption is related to the time
needed for the GW to cross the box, L=c, which equals
0.002 sec for the case considered here.

FIG. 2. Spatial Fourier transform jÊy�kz; t�j2 of Ey�z; t� at a
fixed time t � 0:005 45 s.

FIG. 3. The energy density �pl absorbed by the plasma (at
maximum absorption) as a function of the background magnetic
field B0 (diamonds), together with a reference line of logarithmic
slope 2 (dotted line).

FIG. 4. The energy density �pl absorbed by the plasma (at
maximum absorption) as a function of the background matter
density �0 (diamonds, connected with a dotted line).
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The maximum amplitudes of the excited oscillations are
proportional to the box length L, as explained above. This
implies that the amount of energy density absorbed is
proportional to the squared box length, L2, with the physi-
cal meaning of L to be the length along the propagation
direction of the GW where the GW meets a constant
magnetic field. We additionally verified this scaling behav-
ior with numerical simulations in which the box length L
was varied. The absorbed energy is thus proportional to L3

and to the effective area Aeff through which the GW is
incident on the plasma, where Aeff :� V=L, with V the
volume in which the interaction takes place. We can sum-
marize our numerical findings for the total energy Epl

absorbed by the plasma as follows, noting that in the
case presented here the absorbed energy through an effec-
tive area of 1 cm2 is L� 1023 erg, with L � 5:4�
107 cm:

 

Epl � 3:4� 107

�
L

1 cm

�
3
�
Aeff

1 cm2

��
B0

1015 G

�
2
�
h0

10�4

�
2

�

� fgw
5 kHz

�
2

erg; (45)

and Epl is independent of �0.

V. SPHERICAL COORDINATES: DECAYING
MAGNETIC FIELD

In applications to spatially extended astrophysical sys-
tems, the constancy of the background magnetic field is a
strong idealization. Since our scope is to elucidate the
response of the plasma to a passing GW, the initial plasma
state should be a natural state of the plasma, preferably an
MHD equilibrium. In 1D Cartesian systems, nonconstant
magnetic fields lead to unstable plasma states, the initial
difference in magnetic pressure along the z-direction gives
rise to immediate and violent plasma dynamics that aim at
flattening the gradient in the magnetic field. Trying to
compensate the gradient in magnetic pressure with the
plasma pressure, we find, first, that the plasma pressure
would have to take unphysically high values, and, second,
such setups are still numerically unstable.

We thus proceed in this section to transform the system
of equations to spherical coordinates, which will allow one
to have decaying magnetic fields as equilibrium initial
states for the plasma. The GW is assumed to travel radially
outwards, so that in the TT (transverse traceless) gauge and
in a flat orthonormal spherical frame �ct̂; r̂; �̂; ’̂� the dis-
tortion to the flat ONF metric ��̂ 	̂ caused by the GW is of
the form h�̂ 	̂ � diag�0; 0;�h�r; t�;�h�r; t��, assuming
again a + polarized GW traveling in the r̂ direction and
oscillating in the perpendicular, �̂-’̂ plane (see [22]; Greek
indices in the following refer to the spherical coordinate or
ON frame). In the spherical coordinate base �ct; r; �; ’�,
the metric then takes the form

 g�	 � diag��1; 1; r2�1� h�; r2sin2����1� h��: (46)

The transformation matrix between the spherical GW co-
ordinate system of Eq. (46) and the corresponding ONF is
given by

 �e�̂�	̂ � diag
�
1; 1;

1

r
������������
1� h
p ;

1

r sin���
������������
1� h
p

�
(47)

and its inverse �e�̂�	̂.
To construct the Faraday and the fluid stress energy

tensor, we can proceed as in the Cartesian case, i.e. we
simply write the tensors in the ONF in flat spacetime form,
using the observable 3-vector components of ~B�sph� �

�Br; B�; B’�, ~E�sph� � �Er; E�; E’�, and ~V�sph� �

�Vr; V�; V’�. In this way, we have for the Faraday tensor

 F�̂ 	̂ �

0 Er E� E’
�Er 0 B’ �B�
�E� �B’ 0 Br
�E’ B� �Br 0

0BBB@
1CCCA: (48)

(Formally, one simply has to replace the indices as x! r,
y! �, z! ’ in the Cartesian flat spacetime form, as can
be verified by the explicit procedure of first formulating the
respective tensors in Cartesian, flat spacetime form in
terms of ~B, ~E, and ~V, making then a coordinate trans-
formation to flat spherical coordinates, identifying the
spherical vector components of ~B�sph�, ~E�sph�, and ~V�sph�

from those of ~B, ~E, and ~V, and then transforming to a
flat, spherical ON frame.) The energy momentum tensor in
the ONF correspondingly is

 T�̂ 	̂
�fl� � Hu�̂u	̂ � ��̂ 	̂pc2; (49)

with the 4-velocity now taking the form u�̂ �
�̂�c; Vr; V�; V’�.

The covariant derivatives can be done in two ways:
Either in the ONF, with the use of the Ricci rotation
coefficients [Eq. (4), calculated now from Eq. (47)], or
by first transforming to the coordinate base with the trans-
formation Eq. (47), and then using the Christoffel symbols
[calculated from the metric Eq. (46)]. The final equations,
expressed in the observable variables (B�, E’, and Vr, see
below), are identical in the two kinds of treatment.

The plasma evolution is determined by Faraday’s equa-
tion, the momentum equation, and the continuity equation,
which are formally equivalent to Eqs. (16), (20), and (21),
respectively, just with the indices â, b̂, ĉ replaced by �̂, 	̂,
�̂.

The model is specified completely analogously to the
Cartesian case. We focus on MHD modes that propagate
along the radial direction; the magnetic field is assumed to
be perpendicular to the propagation direction, ~B�sph� k �̂, as
well as the electric field, ~E�sph� k ’̂, whereas ~V�sph� k r̂. The
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nonzero plasma variables are thus B�, E’, and Vr, and they
all spatially depend only on r.

To derive the final equations, we again explicitly expand
the covariant derivatives, keeping all nonlinearities, and
expressing all components in terms of the observable var-
iables B�, E’, and Vr. The final equations are found to be
formally equivalent to the Cartesian case, in particular, the
gravitational coupling terms remain the same, only the
partial derivatives are corrected in the way usual for flat
spherical coordinates. The reason is that the geometrical
setup used is completely equivalent to the one in the
Cartesian case, and, of course, the use of spherical coor-
dinates leaves the curvature of spacetime unchanged. After
all, the electric field is given from the adjusted Eq. (14) as
E’ � �

1
c VrB�; Faraday’s equation [from the adjusted

Eq. (16)] writes

 @tB� � c@rE’ � cE’=r�
1

2
B�

@th
1� h

�
1

2
cE’

@rh
1� h

:

(50)

The r-component of the momentum equation [from the
adjusted Eq. (20)] is
 

@tqr̂ � @r

��
qr̂ �

c
4�
��E’B��

�
Vr

�

�
2

r

��
qr̂ �

c
4�
��E’B��

�
Vr

�
� @r

�
c2

8�
�B2

� � E
2

�

�

�
2

r

�
c2

8�
�B2

� � E
2

�

�
� c2@rp�

c
8�

B��cB� � E’Vr�

�
@rh
�1� h�

�
c

8�
E’�cE’ � B�Vr�

@rh
�1� h�

� qẑ�@th� Vr@rh�
h

1� h2 � 0; (51)

where we defined the new momentum variable qr̂ as qr̂ :�
HVr�̂

2 � c
4� ��E’B��. The continuity equation [from the

adjusted Eq. (21)] takes the form

 @tD�@r�DVr��2DVr=r��D@th�DVr@rh�
h

1�h2�0;

(52)

with the density variable D :� �̂�.
To determine the GW evolution equation in spherical

coordinates, we write the Laplacian in Eq. (22) in its usual
spherical form, assuming h to be spatially dependent only
on r, which yields

 @tth � c2@rrh�
2

r
c2@rh: (53)

We have omitted the backreaction of the plasma here, since
the results in Cartesian coordinates, for which more energy
is expected to be absorbed than for the case of decaying
background magnetic fields, showed that the backreaction
is not important for the range of background magnetic

fields B0 considered here. For numerical purposes, we
again have to turn Eq. (53) into a system that is first order
in time, defining a :� @th, and b :� c@rh, so that

 @th � a (54)

 @ta � c@rb� c2b=r (55)

 @tb � c@ra: (56)

The numerical implementation is basically identical to
the Cartesian case, including the treatment of the bounda-
ries, just the extra terms of the equations have to be added,
and, in the case we use free outflow boundaries, the one-
way wave equation has to be replaced by its spherical
analogue. The equations are solved in the radial interval
�rin; rin � L	, with inner boundary rin and radial length L.

A. Numerical results

We assume the background magnetic field to decay
spatially as B0�r� � B0�rin=r�, so that B0 is the magnetic
field at the inner edge rin. This falloff corresponds to a
natural steady state in spherical coordinates, as can be seen
when inserting B0�r� into Eq. (50) (assuming no GW to be
present, h � 0). Similarly, we set the background density
to �0�r� � �0�rin=r�2, since if there were an outflow with
constant velocity, this density falloff forms a stationary
state according to Eq. (52). Finally, from Eq. (51), it is
obvious that the momentum is in a stationary state if Vr 
0, and we consequently choose the initial condition
Vr�r; t � 0�  0. The initial conditions for the magnetic
field are B��r; t � 0� � B0�r�, and for the density we
choose ��r; t � 0� � �0�r�. In the numerical studies fol-
lowing below, the standard parameter values are B0 �
1015 Gauss, �0 � 10�14 g=cm3, and rin � 5� 106 cm.

The gravitational wave is again harmonically driven at
the inner edge rin of the simulation box, h�rin; t� �
h0�rin; t� cos�kgwrin �!gwt�, where the amplitude
h0�rin; t� rises within roughly 1 ms from 0 to h0, at which
value it stays constant, as in the Cartesian case, and we let
h0 � 10�4.

Our main concern is the energy absorbed by the plasma.
We thus repeat the parametric study of Sec. IV C for the
case of the spatially decaying background magnetic field,
varying one parameter at a time and keeping the others
fixed. We find again that the energy density �pl absorbed by
the plasma scales as

 �pl / B2
0h

2
0f

2
gw; (57)

and that it is independent of the background density,
roughly for the same range as shown in Sec. IV C. What
changes though is the scaling with the box length L, and
moreover the energy density depends on the distance rin

from the star at which the inner edge of the simulation box
is located. As shown in Fig. 5 (top), the scaling with L is of
approximate power-law form only for large L. The scaling
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with rin (Fig. 6, top), on the other hand, is of rough power-
law form in the entire investigated range. On determining
the power-law indices, the energy density is found to
exhibit the approximate scaling

 �pl / r
2:3
in L

�0:7 (58)

for L large.
In order to get an estimate of the energy absorbed by the

plasma, we have to assume a specific geometry for the
plasma volume. In view of the scenario of a star with a
dipole magnetic field that emits GWs, we focus on the
region near the equatorial plane where the GW propagation
direction and the magnetic field are perpendicular. We thus
consider the plasma in the conical volume of radial size L
between the inner and outer radii rin and rout � rin � L,
respectively (with r the distance from the star), which is
limited to within the poloidal opening angle � and the

toroidal range ’, as illustrated by the sketch in Fig. 7. The
plasma volume is given as

 V�rin; L� �
2
3’ sin��=2��r3

out � r
3
in�; (59)

and the total plasma energy Epl in this volume is deter-
mined as Epl � �plV�rin; L�. In the numerical estimates, we
assume ’ � 180� and � � 10�. The scaling of Epl with
both, L (Fig. 5, bottom), and rin (Fig. 6, bottom), respec-
tively, is of clear power-law form,

 Epl / r2:7
in L

2:3: (60)

In summary then, for the specific plasma volume as-
sumed and on determining the numerical factors, the en-
ergy absorbed by the plasma is given by the relation
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er
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FIG. 5. Top: Mean energy density �pl absorbed by the plasma
as a function of box length L, with the inner edge of the
simulation box at rin � 5r? (plus symbols, connected with solid
line), together with a reference line of logarithmic slope �0:7
(dashed line). Bottom: Energy absorbed by the plasma in the
conical volume of radial length L and with inner edge at rin �
5r? as a function of L (plus symbols, connected with solid line),
together with a reference line of logarithmic slope 2.3 (dashed
line).
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FIG. 6. Top: Mean energy density �pl absorbed by the plasma
in the conical volume as a function of the position rin of the inner
edge of the simulation box, with fixed box length L � 540 km
(plus symbols, connected with solid line), together with a
reference line of logarithmic slope 2.3 (dashed line). Bottom:
Energy absorbed by the plasma in the conical volume of radial
length L � 540 km, as a function of the position of the inner
edge rin of the simulation box (plus symbols, connected with
solid line), together with a reference line of logarithmic slope 2.7
(dashed line).
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Epl � 1:1� 107

�
rin

1 cm

�
2:7
�
L

1 cm

�
2:3
�

B0

1015 G

�
2
�
h0

10�4

�
2

�

� fgw
5 kHz

�
2

erg; (61)

and Epl is independent of �0. Note that in the correspond-
ing Eq. (45) for constant background magnetic field, no
assumption on the shape of the volume was made, so that
the effective area Aeff appears in Eq. (45).

VII. ASTROPHYSICAL APPLICATION AND
DISCUSSION

Noteworthy, both equations for the energy, Eq. (45) for
constant and Eq. (61) for decaying magnetic field, dimen-
sionally scale with length l as l5. In Eq. (61), this is
immediately obvious from the factor r2:7

in L
2:3, and in

Eq. (45) the factor L3Aeff obviously has dimensions l5.
Equations (45) and (61) are phenomenological equations
that summarize the numerical results, and as such we could
replace f2

gw by either k2
gw or 1=�2, using the GW dispersion

relation and adjusting of course the numerical factors in the
denominator. Remarkably then, Eqs. (45) and (61) would
have correct physical units of energy, namely, volume (l3)
times energy density (the units of B2

0), and the remaining
factor of l2 cancels the units of k2

gw.
Our results imply that the interaction of a GW with a

plasma is an efficient mechanism for the energizing of the
atmospheres of strongly magnetized stars, most promi-
nently of the atmospheres of magnetars. In the following,
we will give an estimate of the mechanism’s efficiency.

GWs are expected to be emitted by magnetars, as by
usual neutron stars, when they undergo some deformation.
There are two distinct kinds of GW emission to be ex-
pected, continuous emission as the result of a long lasting
deformation of the star, and bursty emission caused by
isolated, catastrophic, short duration events (see e.g. [23]
for a discussion). Continuous emission allows much
weaker GW signals to be detected at the Earth than bursty
emission, since the signal can be integrated over an ex-
tended observation period. The continuous emission of a
compact star typically has a frequency closely related to
the spin frequency of the star (e.g. [1]), which for the
known magnetars is of the order of several 10�1 Hz (e.g.

[16,24]). According to both Eqs. (45) and (61), the energy
absorption is not very efficient at such low frequencies, so
that we do not consider continuous emission here.

Bursty GW emission of magnetars, on the other hand,
can be the result of the rearrangement of the strong internal
magnetic field (e.g. [25]), or a consequence of crustal
cracking (starquake, e.g. [26,27]), caused by stresses ex-
erted on the crust by the strong internal magnetic field.
These events have short duration, typically less than a sec-
ond or even of the order of a few milliseconds (e.g. [23]),
and the GW frequency is estimated to lie in the kHz range
(e.g. [26]). The GW amplitude near the star is estimated to
be of the order 10�5 to 10�4 (e.g. [25]). For magnetars
relatively near to the Earth, the GW signal could in prin-
ciple be detected; the events are isolated though and have a
poor event rate of roughly 10�1 events=year, according to
[25] (the nearest magnetar known to date is estimated to be
at roughly 10 kpc from the Earth, see e.g. [24]).

The magnetic field of neutron stars is poloidal within the
light cylinder, so that, near the equatorial plane, a GW
generated by the magnetar and traveling radially outwards
propagates perpendicular to the magnetic field, as in the
presented simulations. The typical magnetic field B? of a
magnetar is currently estimated to be of the order of 1015 to
1016 G at the surface (e.g. [13,15,16]), and, as a dipole
field, its magnitude falls off as B�dip�

0 �r� � B?�r?=r�
3 with

distance r from the star. For simplicity, we assume the
amplitude of the GW to decay as h�gw�0 �r� � h?�r?=r�,
which strictly holds only for large r (h? is the GW-
amplitude at the stellar surface).

For the energy estimate, we consider the plasma in the
conical volume introduced in Sec. [see Eq. (59)] and
illustrated by the sketch in Fig. 7, and which is character-
ized by the inner edge at rin and its radial length L. For the
numerical estimates, we set B? � 1016 G, h? � 10�4 with
GW frequency fgw � 2 kHz, r? � 10 km, � � 10�, and,
to take possible anisotropic GW emission into account,
’ � 180�.

A. Energy estimate with constant magnetic field

In the first energy estimate, we use the results from the
case of constant background magnetic field, Eq. (45), i.e.
we assume the magnetic field and the GW amplitude to be
constant over the length L of the interaction volume. Since,
according to Eq. (45), the energy depends on the squared
values of B0 and h0, we set B2

0 � h�B
�dip�
0 �r��2i and h2

0 �

h�h�gw�0 �r��2i, respectively, where h� � �i denotes the mean
over the radial interval �rin; rin � L	. Finally, with the
plasma volume given by Eq. (59), we have for the effective
area

 Aeff � V�rin; L�=L: (62)

Figure 8 (top) shows the absorbed energy as a function
of rin for four different values of L. The energy decreases

FIG. 7. Sketch: The GW interacts with a plasma volume in the
equatorial plane (see text for details).
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fast with distance, it roughly is proportional to 1=r5:7
in , so

that at rin � 5r?, the energy has fallen to Epl �

4� 1038 erg for e.g. L � 500 km. Extrapolating our re-
sults to regions closer to the star, we find at rin � 2r? and
again for L � 500 km a plasma energy Epl � 9�
1040 erg (Epl � 7� 1041 erg for L � 1000 km), which is
roughly two to three orders of magnitude less than the
energy released in giant flares on magnetars (e.g.
[13,15,16]). Even closer to the star, at rin � r?, the energy
is of the order of Epl � 5� 1042 erg (Epl � 4� 1043 erg
for L � 1000 km), approaching marginally the energy

observed in giant flares, but still one order of magnitude
smaller. The energy determined for rin � r? is not a com-
pletely justified extrapolation, since for consistency with
our numerical results, we have to consider the plasma a few
stellar radii away from the magnetar, where the back-
ground spacetime can be considered flat, we nevertheless
can consider the estimate indicative of the actual energy
absorbed. For different values of B? and h?, the energy
values given here scale according to Eq. (45) in a straight-
forward way.

For L � 500 km, the plasma volume is 2� 107 km3 for
rin � r? and increases to 4� 107 km3 for rin � 10r?,
which corresponds to effective areas of Aeff � 5�
104 km2 and Aeff � 8� 104 km2, respectively. The in-
volved volumes and areas are thus relatively small.

B. Energy estimate with decaying magnetic field

The second estimate of the absorbed energy is done
using the results from the case of decaying background
magnetic field, Eq. (61). Outside the interaction volume,
the magnetic field and the GW amplitude are given by
B�dip�

0 �r� and h�gw�0 �r�, respectively. Inside the interaction
volume, the magnetic field is assumed to decay as 1=r,
B0�r� � B0�rin=r�, and we set B0 � B�dip�

0 �rin�. The mag-
netic field has thus a realistic decay up to rin and a realistic
field strength at rin; in the interaction volume it does not
decay though fast enough. The GW amplitude, as solution
of the spherical wave equation, exhibits a realistic ( / 1=r)
falloff also within the interaction region.

The absorbed energy as a function of rin is shown in
Fig. 8 (bottom) for different values of L. It falls off as
1=r5:3

in , i.e. less steep than in the case of constant back-
ground magnetic field. For the same interaction lengths L
as in the case of constant background magnetic field, the
energy at rin � 5r? is found to be roughly 30% (or, at rin �
r?, one-fourth) of that found in the energy estimate based
on constant background magnetic field. In the region of
interest relatively close to the star, this second energy
estimate yields thus slightly less energy than the first one.

If the magnetic field in the simulation box would decay
as 1=r3, we would not have to use arbitrary and relatively
small values for L, and we could consider the plasma to
extend to its physical limit, which is either the light cylin-
der or the length induced from the GW burst duration. The
known magnetars have periods P? of the order of seconds
(e.g. [16,24]), so that the radius llc of the light cylinder
typically is llc � P?c=�2�� � 5� 104 km. This distance
corresponds to a GW burst duration of 0.2 sec. When
setting L � llc, the energy estimate can be considered as
a true upper limit for the energy expected to be absorbed in
the case of a realistic decay of the magnetic field.

The dash-dotted line in Fig. 8 represents the case L �
llc. At rin � 5r?, the energy in the plasma is Epl � 1�
1043 erg, which is still less than the energy observed in
giant flares, at rin � 2r?, the energy reaches values of the
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FIG. 8. Top: Estimate of the energy Epl absorbed by the plasma
on the base of Eq. (45) as a function of the inner distance rin

from the star, for different interaction lengths L (dots: L �
100 km; short dashes: L � 250 km; long dashes: L � 500 km;
and solid line: L � 1000 km), and for � � 10�, ’ � 180�.
Bottom: Estimate of the energy Epl absorbed by the plasma as
a function of the inner distance rin from the star, on the base of
Eq. (61), i.e. for the case of a decaying background magnetic
field, and for L � 5� 104 km (dash-dotted line), L �
1� 103 km (solid line), L � 5� 102 km (long dashes), L �
2:5� 102 km (short dashes), and for L � 1� 102 km (dotted
line), and for � � 10�, ’ � 180�.
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order Epl � 2� 1045 erg, which is a typical energy of
giant flares, and finally Epl � 6� 1046 erg at rin � r?,
which corresponds to the energy observed in the most
energetic giant flares, and which, by almost 2 orders of
magnitude, is less than the energy that is typically released
in a short GRB, according to latest estimates (e.g. [14,16]).
With L � llc, the plasma volume is now larger, it amounts
to 21013 km3 for rin � 5r?.

C. Discussion

In both kinds of energy estimate, we assume a realistic
falloff of the background magnetic field and the GW
amplitude outside the interaction volume. In the interaction
volume, we had to make the assumption of either constant
background magnetic field and GW amplitude in the first
energy estimate, or, in the second energy estimate, realistic
decay of the GW amplitude ( / 1=r, not imposed, though,
but as it naturally appears as the solution of the spherical
wave equation) together with a not steep enough decay of
the background magnetic field ( / 1=r instead of / 1=r3).
In both energy estimates, the assumed length of the inter-
action volume is an arbitrary free parameter, except for the
one case of the decaying magnetic field where L is set
equal to the physical limit, the light cylinder radius. In this
case, the corresponding energy estimate can be considered
as a true upper limit for the absorbed energy, it is though
difficult to estimate how close it is as an approximation.

After all, with the assumptions made in mind, we can
conclude that the GW plasma interaction in the vicinity of
magnetars is an important mechanism that can energize the
plasma considerably on short time scales, depositing en-
ergy of the order of at least 1041 erg and may be up to
1043 erg in the plasma. Given that close to the star the
estimated energies are close to but slightly smaller than
those observed in giant flares, only the upper limit derived
is of the order of the energy seen in the strongest giant
flares, we conclude that the GW-plasma interaction mecha-
nism can be the primary energizing mechanism behind
giant flares only if, exceptionally, more favoring conditions
are met than those assumed here, such as a higher GW
frequency, a stronger GW amplitude, a deviation from the
1=r3 decay of the background magnetic field, etc. We thus
cannot exclude that the GW-plasma interaction is the basic
mechanism behind giant flares, the energies we find are
though not in favor of such a model. That the GW-plasma
interaction is also the primary mechanism behind short
GRBs is unlikely on the basis of our results, even the upper
limit for the absorbed energy is a few orders of magnitude
too small.

Our numerical simulations were done for the case of a
flat background spacetime, which does not hold in the
range rin � 2r? anymore, to which we have extrapolated
the energy estimates. The nonflatness of spacetime close to
the star, together with the main idealizing assumptions as
stated above (the necessarily arbitrary choice of a value for

L, either the constant magnetic field or the decaying mag-
netic field with a not steep enough falloff) imply that our
energy estimates must be interpreted with some care; they
can be taken though as indicative of the fact that the GW-
plasma interaction is efficient and is an important mecha-
nism near the star. Also worth mentioning is the uncer-
tainty concerning the actual magnetic topology in the
flaring magnetosphere—e.g. the superstrong magnetic
field that produces giant flares cannot always be in perfect
dipole form—since any deviation from the dipole is likely
to intensify the GW-plasma interaction through the en-
largement of the possible interaction regions. It thus re-
mains to be seen how far the given numbers will be
modified when a more realistic decay (1=r3) of the back-
ground magnetic field is used in the simulations and when
the curvature of the background spacetime is included. In
favor of the model of giant flares on magnetars driven by
GWs is that the mechanism has a fast enough time scale, of
the order of milliseconds.

VII. CONCLUSION

We derived the equations for the GW-plasma interaction
and solved them numerically for the two cases of constant
background magnetic field in Cartesian coordinates and
radially decaying background magnetic field in spherical
coordinates, respectively.

Our results show that strongly magnetized plasmas, with
magnetic fields of the order of 1015 Gauss, are efficient
absorbers of GW energy, largely irrespective of the plasma
density, and with an absorption time scale of the order of
milliseconds. The results concerning the plasma energetics
are summarized in the scaling laws of Eq. (45) for the case
of constant background magnetic field, and of Eq. (61) for
a decaying background magnetic field, and they imply that
GWs may be the energy source for secondary, very ener-
getic phenomena.

The excited plasma modes are of the magnetosonic type,
with phase velocity that numerically is indiscernible from
the speed of light, and no harmonics are found to be
excited. The damping of the GWs is still relatively weak,
even for the very strong magnetic fields considered here.

In particular, we can conclude that the GW-plasma
interaction is an efficient and important mechanism in
magnetar atmospheres, most prominently close to the
star. Whether it even is the primary mechanism behind
giant flares cannot be excluded on the basis of our results;
further investigations are needed though to clear this
question.

ACKNOWLEDGMENTS

This work was supported by the Greek Ministry of
Education through the PYTHAGORAS program. We
thank K. Kokkotas, J. Moortgat, D. Papadopoulos, N.
Stergioulas, and J. Ventura for helpful discussions.

HEINZ ISLIKER, INGMAR SANDBERG, AND LOUKAS VLAHOS PHYSICAL REVIEW D 74, 104009 (2006)

104009-12



[1] K. D. Kokkotas, Classical Quantum Gravity 21, S501
(2004).

[2] G. Brodin and M. Marklund, Phys. Rev. Lett. 82, 3012
(1999).

[3] G. Brodin, M. Marklund, and P. K. S. Dunsby, Phys. Rev.
D 62, 104008 (2000).

[4] Yu. G. Ignat’ev, Gravitation Cosmol. 1, 287 (1995).
[5] A. Källberg, G. Brodin, and M. Bradley, Phys. Rev. D 70,

044014 (2004).
[6] J. Moortgat and J. Kuijpers, Astron. Astrophys. 402, 905

(2003).
[7] J. Moortgat and J. Kuijpers, Phys. Rev. D 70, 023001

(2004).
[8] D. Papadopoulos, N. Stergioulas, L. Vlahos, and J.

Kuijpers, Astron. Astrophys. 377, 701 (2001).
[9] M. Servin and G. Brodin, Phys. Rev. D 68, 044017 (2003).

[10] M. Servin, G. Brodin, M. Bradley, and M. Marklund,
Phys. Rev. E 62, 8493 (2000).

[11] M. D. Duez, Y. T. Liu, S. L. Shapiro, and B. S. Stephens,
Phys. Rev. D 72, 024028 (2005).

[12] R. C. Duncan and C. Thompson, Astrophys. J. 392, L9
(1992).

[13] L. Stella, S. Dall’Osso, and G. L. Israel, Astrophys. J. 634,
L165 (2005).

[14] T. Piran, Rev. Mod. Phys. 76, 1143 (2005).

[15] K. Hurley et al., Nature (London) 434, 1098 (2005)
[16] E. Nakar, A. Gal-Yam, T. Piran, and D. B. Fox, Astrophys.

J. 640, 849 (2006).
[17] S. J. Schwartz et al., Astrophys. J. 627, L129 (2005).
[18] J. B. Hartle, Gravity (Addison-Wesley, San Francisco,

2003).
[19] L. D. Landau and E. M. Lifshitz, The Classical Theory of

Fields (Oxford University, New York, 1984), 4th ed.
[20] J. Moortgat and J. Kuijpers, Mon. Not. R. Astron. Soc.

368, 1110 (2006).
[21] B. Fornberg, A Practical Guide to Pseudospectral

Methods (Cambridge University Press, Cambridge,
England, 1998).

[22] K. S. Thorne and R. D. Blandford, Applications of
Classical Physics (2004), Chap. 26, http://www.pma.
caltech.edu/Courses/ph136/yr2004/.

[23] F. Dubath, F. Foffa, M. A. Gasparini, M. Maggiore, and R.
Sturani, Phys. Rev. D 71, 124003 (2005).

[24] P. M. Woods and C. Thompson, astro-ph/0406133.
[25] K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001).
[26] E. Coccia, F. Dubath, and M. Maggiore, Phys. Rev. D 70,

084010 (2004).
[27] J. A. de Freitas Pacheco, Astron. Astrophys. 336, 397

(1998).

INTERACTION OF GRAVITATIONAL WAVES WITH . . . PHYSICAL REVIEW D 74, 104009 (2006)

104009-13


